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On the basis of a semiempirical Prandtl model of turbulence, the heat transfer 
and drag coefficients are determined in a turbulent boundary layer with longi- 
tudinal pressure gradient. 

Investigation of gradient turbulent flows is of considerable scientific and practical in- 
terest, in connection, particularly, with the problem of heat-transfer intensification. The 
hydrodynamics of flows with a positive pressure gradient have been investigated most complete- 
ly [i]. Flow with a negative pressure gradient, and especially heat-transfer questions, have 
been studied less. Up to now there has been no convincing explanation of the so-called "re- 
laminarization" effect, which consists of a reduction in the heat transfer coefficient to 
values inherent in a laminar flow [2-5]. The number of theoretical papers on heat transfer 
in gradient flows is extremely small. They are devoted mainly to the determination of a co- 
efficient of the Reynolds analogy [6, 7]. The dependences obtained that relate the heat- 
transfer coefficient to the drag coefficient are not closed, since they include the integral 
boundary layer characteristics. To obtain them, the velocity (temperature) profiles in the 
boundary layer must be known, which is a no less complex problem. 

The possibilities of obtaining closed dependences that would permit computation of the 
heat transfer and drag if only the magnitude of the pressure gradient were known have not been 
investigated up to now, even for the case of the simplest turbulent shear flow model, a model 
based on the hypothesis of the Prandtl mixing path. 

The present paper is an attempt to eliminate this gap. 

Let us examine a two-layer model of a turbulent shear flow. For the turbulent core 

8U 
T = ~ T - - ,  (i) oy 

where 
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Starting from these relationships, we can obtain an expression for the drag coefficient. Let 
us write it in the form 
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. , ,  112 Assuming ll6=~gzo [i], we convert the last relationship to 
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where 

1t ~= ~2  (x 1--~1 ) 2, 
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Here ~: = yx/6 and m~ = Ua/U are dimensionless values of the viscous sublayer thickness 
and of the velocity on its boundary, ~ = c~/Cfo is the relative drag coefficient, and ~o, 

cfo are the tangential stress and the drag coefficient of the turbulent boundary layer under 
"standard conditions," i.e., on a flat semiinfinite plate, ~ = T/T w. 

The expression for the heat flux in the turbulent core is 

~T OT 
q = - - c p  pr T Oy (3) 

A result of this equality and of (I) is the relationship 

cf dO &o 
2St d~ Prr d~ T 

Here 0 = ( T ~ T w ) / ( T ~ - - T w ) ,  q =  q/q~ is the distribution of the dimensionless heat flux in 
the turbulent core. It is known that this distribution possesses the conservativity property 
relative to the pressure gradient; Hence, without substantial error, it can be assumed that 

= qo. Also assuming that qo = ~o is valid for dP/dx = 0, we integrate (3) between the 
limits ~ and i. We obtain 

Wr 1 - -  01 l 
--= , r = P r  T / S PrTd~" 

~ % d~ d~ ~' 
3o ~ d~ 

Here ~ = St/Sto is the relative heat-transfer coefficient, and 8~ is the dimensionless tem- 
perature on the viscous sublayer boundary. 

Taking into account that 

we find 

where 

~F1/2 = x I~ 

I 

I~ ~ - - d ~ .  
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Starting from (4), the following comparative relationships can be obtained between the heat 
transfer and the drag coefficients. If t = 1 and r = i, we obtain ~T = ~ = i. For diffusion 

, , ~I/2' flows (dP/dx > 0~ t > i and therefore PT > ~ For contracting flows (dP/!dx < 0) t < i, and 
therefore ~T < ~12 

A result of the relationships (2) and (4) is an expression for the relative heat-trans- 
fer law 

WT--  2• ( 1 - - 0 1 ) ( 1 - - ~ 1 )  

C~o Ill z (5) 

T h e r e f o r e ,  t he  d e t e r m i n a t i o n  of  t h e  r e l a t i v e  d r a g  and h e a t - t r a n s f e r  c o e f f i c i e n t s  i s  
a s s o c i a t e d  w i t h  t h e  e v a l u a t i o n  of  t h e  two i n t e g r a l s  I~ and I 2 .  T h i s  r e q u i r e s  g i v i n g  t h e  
function t a specific form. 

Flow with Positive Pressure Gradient. For this flow the tangential stress distribution 
over the boundary layer thickness is taken approximated by the polynomial 

= ( ~ - - D  ~ ( ~ + 2 ~ + A ~ ) , A = - !  6 ~u~ , 
.c~ U= dx (6) 

and therefore 
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t = l +  A~ 
1+% 

For such a form of the function t, the integrals I I and Ia are evaluated in quadratures for 
r=l: 

l~ = o" @ F~ (A, ~1), I2 = O" @- F 2 (A, ~,), 
1--~, 

2 %2+% ' 

Fe= 21n[3Y2- I  +~z  ( 1 @ % 2  ~2@% )I./~] . 

Here 
A )1/2 

= l + - - f -  , ;C,_= ( l + a ~ , )  '/~, 

a l. 
k. = 1 @ 3 ) , 6"=--1n~1.  

If it is assumed that 

, _ o , = , _ o , _  ( I o ) . , .  __  
112 

holds approximately, we obtain the following formulas to evaluate the drag and heat transfer: 

F~(A, ~0--21n( l + % a  ) 
~ - i / 2  = 1 + 2 , (7) 

O 

~FI ~g-~/2 ( 1 + 2 . 
o (8)  

If the state of the boundary layer is not too close to preseparation, i.e., A~I<I , then 
(7) and (8) are simplified: 

1 

(1 + Fdo) 2 
~g'/2 

1 + Fda 

(9) 

(io) 

The dependences F: and Fa are presented in Fig. la. 

Flow with Negative Pressure Gradient. For contracting flows the polynomial approxima- 
tion of the tangential stress (6) becomes unacceptable. In fact, it is not difficult to es- 
tab!ish that for A <--3 the function T is negative, which has no meaning physically. 

Following [6], we take 

= exp (A~ (I -- ~) Jc ~2 In e), 

where e is a small indefinite number such that for ~ = 1 we have ~ = e. Then 

t = exp [-- a~ (1 -- ~)1, a = -- AI2. 

Q u a d r a t u r e s  f o r  I~ and 12 do no t  e x i s t  f o r  such  a f u n c t i o n  t .  We w r i t e  

11 = O exp (-- a~l) -- FI (A, ~1), ~ = a exp (a~l) -- P2 (A, ~1), 
where 

FI (A, ~I) = -- 2~ exp (--el4) exp (~z 2) z In (z + 1/2) dz, 
- - 1 / 2 + ~ 1  
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Fig. i. The dependences FI(A) and F2(A)I: a) 
positive pressure gradient; b) negative pres- 
sure gradient. 

~75 "~qYo, ~z~ i 

~ a ' 
Fig. 2. Dependences of the relative drag 
and heat transfer ~T coefficients on the di- 
mensionless pressure gradient g for different 
values of Re**: i) Re** = 103; 2) i0"; 3) 
105; a) positive pressure gradient; b) nega- 
tive; I, II, III are experimental data from 
[2], [3], [5], respectively. 

i/2 
F.~ (A, ~1) = 2~ exp (a/4) ,t ~ z exp (-- ~z 2) In (z + 1/2) dz. 

--I/~+~ 

It can be shown that 

where F 2(A)~F2{A, ~l=0)- 
For large values of A the more correct estimate 

P~ ( a ,  ~i) = r l  (A) (1 + O (~x)) - -  - -  

should be used for the func t ion  F: .  
the form 

2 

Formulas to calculate the drag and heat transfer take 

, a~l ( - 1 )  F~ 
~-i/2=exp(_~x)_p__~_ I + o +--'o (ll) 

rgF,=W-1/2[exp(~g0 g~l ( 1 @  1 ) _ ~ ] .  
2 ~ (12) 

The dependences FI(A) and F2(A) are presented in Fig. lb. 

If A~I < i, which is valid even for sufficiently high stream accelerations, (ii) and (12) 
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Fig. 3. Dependence of the 
boundary layer separation 
parameter Aoc r on the num- 
ber Re**. 

take on the universal form (9) and (i0). 
gral Fa is evaluated approximately as 

For large values of the parameter a ~I0 the inte- 

F (m § 112) 4 ,,~ 
Y 2 = - -  exp (a/4) ' ~  (zrn--1/2 2m - -  1 

m=l 

where F(m + 1/2) is the gamma function. Limiting ourselves to the first four terms of the 
series, we obtain 

F 2 = 4F (3/2) exp (a/4) ~ + 2 ~3/2 , F (3/2) = 0.886. 

Results of the Computations. In order to compute the drag and heat transfer by means of 
(7)-(12), there remains to determine the dimensionless viscous sublayer thickness ~i. From 
the equality 

R e =  ( p f i  o u )  

there follows that in the absence of a pressure gradient 

where Re is the so-called stability criterion for the viscous sublayer. Assuming [i] 

~,--0 ,25 
R e =  134, ct~ =O.O128Re"  

2 

we obtain 

~1o = 1026"*R e**-~ ln~lo = 2 . 3 - - 2 . 0 1 1 g  Re**. 

R e s u l t s  o f  c o m p u t i n g  t h e  v i s c o u s  s u b l a y e r  t h i c k n e s s  i n  t h e  p r e s e n c e  o f  a p o s i t i v e  p r e s -  
s u r e  g r a d i e n t  a r e  p r e s e n t e d  i n  [ 1 ] .  I t  f o l l o w s  f rom t h e r e  t h a t  e v e n  f o r  b o u n d a r y  l a y e r  s e p a -  
r a t i o n ,  when t h e  d i f f e r e n c e  b e t w e e n  ~1 and  ~1o i s  m a x i m a l ,  

(ln ~1 - -  In ~10)/ln ~1 < 0.25, 

i n  a b r o a d  r a n g e  o f  n u m b e r s  R e * * ~  l 0  s . H e n c e ,  i t  c a n  a p p r o x i m a t e l y  b e  a s s u m e d  • =--ln~0. 

D e p e n d e n c e s  o f  t h e  r e l a t i v e  d r a g  and  h e a t - t r a n s f e r  c o e f f i c i e n t s  on  t h e  p a r a m e t e r  g = 
A o / h o c r  a r e  shown i n  F i g .  2 f o r  d P / d x  > 0,  and  on p a r a m e t e r  g = - - A / A o c r  f o r  d P / d x  < 0, f o r  d i f -  
f e r e n t  n u m b e r s  Re** = 1 0 2 - 1 0 5  . H e r e  A0 : ~ A =  2/cfo 5/U= dU=/dx, w h i l e  Aoc r  i s  t h e  c r i t i c a l  
v a l u e  a t  w h i c h  c f  = 0 .  The d e p e n d e n c e  i s  p r e s e n t e d  i n  F i g .  3 .  

We f i r s t  e x a m i n e  t h e  r e s u l t s  o f  d i f f u s o r  f l o w s .  The d e p e n d e n c e s  o f  t h e  r e l a t i v e  d r a g  
c o e f f i c i e n t  on t h e  p a r a m e t e r  a r e  i n  s a t i s f a c t o r y  a g r e e m e n t  w i t h  t h e  a n a l o g o u s  d e p e n d e n c e s  o b -  
t a i n e d  e a r l i e r  on a d i g i t a l  c o m p u t e r ,  w h i c h  c a n  b e  a p p r o x i m a t e d  b y  t h e  r e l a t i o n s h i p  [1 ]  

= ( 1 - -  g)1,54 
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The heat-transfer data have been obtained for the first time. It is seen that if the 
boundary layer is not close to separation, the influence of the positive pressure gradient on 
the heat transfer is negligible. For moderate values of the number Re** ~ 103 , even its small 
increase holds. 

As follows from the results of the computations presented in Fig. 2b, for contracted 
flows, on the other hand, an increase in the drag coefficient and a diminution in the heat- 
transfer coefficient is observed. It is characteristic that the dependence ~(g) is practi- 
cally invariant in a broad range of the numbers Re** = i0~-i05. It can be described approxi- 
mately by the relationship 

~ = 1 - -0 ,93g  2/3. 

Test data on the drag and heat transfer borrowed from [2]-[4] are also presented in Fig. 2b. 
It should be noted that they are all obtained for comparatively small numbers Re** ~ 103. 
Satisfactory correspondence is observed between the theoretical computations and the experi- 
mental data. 

Therefore, it is shown that the so-called "relaminarization" effect for a turbulent 
boundary layer during stream acceleration can be explained on the basis of the classical semi- 
empirical Prandtl theory of turbulence. 

NOTATION 

x,y, longitudinal and transverse coordinates; ~ tangential stress; q, heat flux; U, 
stream velocity; T, temperature; ~, viscosity; p, density; c~, drag coefficient; St, Stanton 
criterion; Pr, Prandtl number; Re**, Reynolds number calculated with respect to the thickness 
of the loss of momentum; ADAo, pressure gradient parameters. The subscripts are: ~, external 
flow; w, wall; I, for viscous sublayer; and 0, for standard conditions. 
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